Blog | Advanced Geosciences Inc

An Overview Of The IEEE Standard 81 Fall-Of-Potential Grounding Test

Posted by markus on Sep 28, 2016

The Institute of Electrical and Electronics Engineers (IEEE) Standard 81-2012 “Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System”, suggests the fall-of-potential grounding test to be used to evaluate the capacity of an electrical grounding system—it is often used by subcontractors to power engineers. 

Why is the IEEE Standard 81 fall-of-potential grounding test important?

Grounding tests are mainly used at lightning protection systems, electrical substations, and industrial sites where expensive machinery needs to be...

How To Test For Land Subsidence Before Breaking Ground

Posted by markus on Sep 12, 2016

Land subsidence is the act of land moving downward, or subsiding. In many cases, land subsidence can signify the formation of a sinkhole, which you can read about in this article. Land subsidence could also signify the presence of an expansive clay. 

To understand the need for land subsidence testing and monitoring, think of the need for both MRIs and X-rays. Just because a patient says his shoulder hurts doesn’t mean a...

The 7 Most Common Signs Of Sinkholes & How To Test For Them

Posted by markus on Sep 12, 2016

One way that sinkholes form is when water in the atmosphere reacts with carbon dioxide and forms a weak carbonic acid. As the slightly acidic rainwater moves through fissures in the limestone, it begins to dissolve and widens the fissures—which eventually creates air or water filled pockets. When those pockets become expansive, they’re called “caves” or “voids.” This is a common natural phenomenon in limestone or dolomite known as karstification—but it can be dangerous, expensive, and life-threatening when the ceiling of a void weakens and caves in. This is known as a “sinkhole.” 

...

Electrical Resistivity: Everything You Need To Know

Posted by markus on Sep 12, 2016

At the most basic level, electrical resistivity (ER) (as used in geophysics) is the measurement of ground variations gathered by applying a small and highly controlled electric current across an array of electrodes.

Electrical resistivity imaging (ERI)—also known as electrical resistivity tomography (ERT)—is a geophysical technique used to create an image of a specific portion of the Earth’s subsurface. It is created through the use of automated geophysical instruments that gather thousands of resistivity measurements via an electrode cable and multiple electrodes.

In this...

Pages