An Introduction To Induced Polarization (IP) Surveying

Induced polarization (IP) is the Earth’s capacity to hold an electric charge over time. IP measures the voltage decay curve after the injected current is shut off. The higher the IP, the longer over time the charge is held—IP decays over time, typically a few seconds but sometimes up to minutes, and will eventually disappear. IP is especially useful for mineral exploration applications. 

7 Types Of Resistivity Instruments & Equipment You Need (& Why)

Have you ever prepared for a vacation, only to arrive at your destination and realize you’d neglected to pack important attire and equipment for your holiday? Recently, in my haste to prepare for a trip, I didn’t make a list and found myself in this very situation—I ended up wearing wool sweaters and jeans in an 80-degree climate. 

2D Resistivity Surveys: The Benefits, Limitations, & Technology

In the 1980s and early 1990s, geophysicists became largely disenchanted with electrical resistivity because of the inadequacies of Vertical Electrical Sounding (VES). Specifically, the VES method assumes that the imaged geology is horizontally layered and that each layer is homogeneous. Of course, this often isn’t the case, causing some project managers (and their clients) to become fed up with the unusable results.

1D Geophysical Resistivity Survey: Vertical Electrical Sounding

Throughout most of the 20th century, Vertical Electrical Sounding (VES) was the dominant geophysical resistivity method. It has been used all over the world for three primary purposes: geotechnical investigation, groundwater exploration, and mineral exploration. VES is performed using either the Wenner electrode configuration described in the ASTM G57 standard or using the Schlumberger electrode configuration. (The Schlumberger method is most commonly used for groundwater and mineral exploration, because it is less labor intensive than the Wenner method.)

Determining Groundbed Location For Cathodic Protection: What You Need To Know

Cathodic protection is a method used to reduce steel oxidation through an electrochemical process. Cathodic protection is used to protect buried or submerged pipelines, bridges, and large steel structures from corrosion, breakdown, and rust when an electrolyte (like water with salt and minerals) is present. The electrolyte serves as a conduit for the electron flow from the anode to the cathode. In steel structures where no electrolyte is present (like a steel building), they are best protected by galvanizing (zinc coating) or simply painting. 

Pages